Hormonal Control of the Making of Crab Shell, a Biological concrete

Enmin Zou
Department of Biological Sciences, Nicholls State University

Abstract

This endeavor sought to determine the hormonal mechanism driving post-ecdysial shell calcification in crustaceans. Carbonic anhydrase (CA) catalyzes the carbon dioxide hydration reaction, which generates bicarbonate ions essential for calcium carbonate formation. Using metal analysis, enzymatic assay, tissue culture, and real-time PCR, my lab has found that epidermal CA activity is correlated to exoskeletal calcium content and that both epidermal CA activity and CA gene expression are inducible by the molting hormone in the blue crab Callinectes sapidus. These results have led to the new paradigm of post-ecdysial shell mineralization being controlled by the molting hormone. Intriguingly, while molting hormone injection elevated epidermal CA activity, the exogenous molting hormone was found to suppress shell calcification, implicating that sclerotization and mineralization of the new shell must be coordinated and enhanced deposition of calcium carbonate as a result of increased epidermal CA activity following hormonal treatment would be avoided to prevent the formation of a structurally defective exoskeleton.

Background

- Crab shell, a biological concrete, is made up of an organic matrix of chitin and proteins (“steel rods”) mineralized by inorganics, primarily carbonate salts (“cement”).
- After molting, crustaceans are covered by a soft shell, which must harden rapidly. Shell hardening consists of sclerotization (“tightening of steel rods”) and mineralization (“addition of cement”).

Scientific Question to Be Addressed

While it is well known that sclerotization is controlled by the neurohormone bursicon [1], the hormonal mechanism driving mineralization remains unresolved. This project attempted to address the question of which hormone controls mineralization in crustaceans, using the blue crab, Callinectes sapidus, as the model crustacean.

Hypothesis

Given the similarity between the patterns of changes in molting hormone concentration and epidermal carbonic anhydrase (CA) activity during the molting cycle [2], it was hypothesized that the molting hormone regulates mineralization through controlling epidermal CA activity due to the following reactions.

1. **Carbonic Anhydrase**
 \[\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}^+ + \text{HCO}_3^- \]
 \[\text{HCO}_3^- + \text{Ca}^{2+} \rightarrow \text{H}^+ + \text{CaCO}_3 \]

2. Significant in vitro induction of epidermal CA mRNA (Fig. 2) and significant in vivo induction of epidermal CA activity (Fig. 3) suggest that epidermal CA is controlled by the molting hormone.

Methodologies

1. The “buster” blue crabs purchased from local softshell crab makers were used to produce postmolt crabs in the laboratory.
2. Calcium content in the shell was analyzed using ICP-OES.
3. Epidermal CA activity was assayed according to Calhoun and Zou [2].
4. The in vitro molting hormone 20-hydroxyecdysone (20-HE) treatment of epidermal tissues followed Booth and Zou [3], while for in vitro treatment 20-HE was injected to post-ecdysial crabs.
5. The expression of epidermal CA genes (CA mRNA) was quantified using quantitative real-time PCR.
6. Epidermal CA gene expression of knocked down using RNAi (through injection of dsRNA to softshell crabs).

Results and Discussion

1. Significant correlation between epidermal CA activity and calcium content (Fig. 1) suggests that CA mediates calcium incorporation into the exoskeleton.

Conclusions

Epidermal CA is controlled by the molting hormone, suggesting that the molting hormone is involved in the regulation of post-ecdysial shell mineralization in Crustacea.

Future Investigation

Further RNAi experiments will be conducted to ascertain the role of epidermal CA in post-ecdysial deposition of calcium to the shell.

Acknowledgements

This study was sponsored by Louisiana Board of Regents B.4.R.18.13 for Nicholls State University Research Council. I am grateful to my graduate students, Stacy Calhoun, Ashley Booth and Andria Ostrowski, and undergraduate students, Madelyn Beyer and Cam Fontenot, for their contributions to this project.

References